

The genetic case for improvement in cattle health

- Snowder et al. (2006)
 - Calves from 1987 to 2001 with incidence of BRD ranging from 5% to 44%
 - Heritability on observed scale was .04 to .08
 - .18 on the underlying continuous scale
 - Concludes that selection against susceptibility to BRD using producer/industry data is practicable

Heritability appears to increase with increasing incidence - Low incidence versus high incidence

- Low incidence versus high incidence years (Snowder et al. 2006)
 True for other binary traits (yes/no)
 Comstock, 2006
- What about correlated response... We don't know in beef cattle

The economic case for genetic improvement of cattle health

- 1997 estimates put prevention and treatment of disease in the feedlot at >\$3 billion (Griffin, 1997)
- ~1.1 million cattle with an estimated value of over \$692 million were lost to respiratory causes in 2005 (USDA, 2006).
- ~7.25 kg (16 pounds) reduction in hot carcass weight for treated animals in 1st 40 days (Snowder et al., 2007)
- Lung damage (yes/no) 15.4 kg (34 pounds) of carcass weight (Engler, 2007)

Challenges to selection for reduced disease susceptibility

- Nature of disease outbreaks
 - High and low morbidity pensDoes that allow expression of genetic
 - potential?
- Flow of data from the feedlot to the breeder
 - Similar to data for carcass traits
 - Potential for use of genetic markers for disease susceptibility

- Quantitative trait loci for sheep parasite resistance (Gutierrez-Gil et al., 2009)
- Casas and Snowder, 2008

 Using treatment records for BRD, pinkeye and footrot.
 - Reported a QTL for disease incidence

Value of markers

- Selection for reduced susceptibility to disease with more accuracy
 Partially overcoming issues with data
- collection
- Identification of high risk animals and potential for better management of those.

Bottom Line

- Genetic variation exists among animals ability to react to different parasites and different pathogens
- The magnitude of this genetic variation is sufficient for successful selection resulting in genetic progress

Colorado State University study evaluating potential for genetic improvement in disease susceptibility

In the preliminary stages of analysis

Hypothesis

- Susceptibility/resistance to disease is, in part, genetically controlled and that genetic control can be characterized by DNA markers.
- Genetic control is potentially manifested through two mechanisms.

Susceptibility to disease • Two factors: • Immunological response to disease challenges • With or without previous challenge - Ability to cope with stress

Previous research

- Immune response to challenge effected by (Salak-Johnson & McGlone, 2007)
 - Stressor typeDuration of stressor
 - Genetics
 - Genetics – Age
 - Social status
- "Nervous" cattle have significantly lower feedlot ADG and higher morbidity (Fell et al. 1999)

Objectives

- Develop methods to identify animals that are genetically superior for feedlot health characteristics through both molecular and quantitative techniques.
- 2. Identify new traits and evaluate their relationship with feedlot cattle health to improve accuracy of selection for disease resistance.
- 3. Validate methodologies and techniques developed in Objectives 1 and 2.

- CompositeBritish and Continental
- JBS-Five Rivers Colorado Beef & South Eastern Colorado Research Center, Lamar CO

Year 1 published results

- An animals entry weight into the feedlot does impact the probability of that animal may require treatment. Heavier animals should less likely to become sick.
- Processing stress, the time an animal spends in an ally awaiting processing and the actual time in the chute being processed, increases that animals susceptibility to future disease challenge

- wind speed, does increase probability an animal will show signs of sickness.
- Temperament, measured by exit velocity, reduces weight gain in the first 45d of feeding.

Number of Treatments	Early ADG	Late ADG	Total ADG
1	30	17	30
2	64	77	64
3	-1.12	70	-1.11

