

	CE	BW	WV	V	YW		MCE	MM	MWW
Adj.		90	700)	1320)			
Ratio		101	107	7					
EPD	9	-1.0	25		49		3	11	23
Acc	.29	.37	.30		.27		.18	.19	.23
	YG	Marb	BF		REA	RF	I 1	TEND	MARB
Adj.	YG	Marb 4.65	BF .23	1	REA 2.5	RF	1	TEND	MARB
Adj. Ratio	YG	Marb 4.65	BF .23 100	1	REA 2.5 5	RF 7	1	tend 6	MARB
Adj. Ratio EPD	YG .21	Marb 4.65 106	BF .23 100 .05	1 9 	REA 2.5 5 39	RF 7		tend 6	marb 8

Adoption of Genomic Predictions

- □ AAA, with others quickly following
- $\hfill\square$ Efficacy of this technology is not binary
- □ The adoption of this must be centered on the gain in EPD accuracy
- This is related to the proportion of genetic variation explained by a MBV
- $\hfill\square$ This is equal to the squared genetic correlation

Simm	Simmental Example Whitacre and Spangler (2011)					
	10%	25%	50%	75%	100%	
SS	3	9	29	102	3,466	
SD	5	19	81	369	8,168	
DS	5	22	100	419	7,179	
DD	16	81	361	1,360	15,291	

Current Angus Panels					
Trait	Igenity (384SNP)	Pfizer (50KSNP)			
Calving Ease Direct	0.47	0.33			
Birth Weight	0.57	0.51			
Weaning Weight	0.45	0.52			
Yearling Weight	0.34	0.64			
Dry Matter Intake	0.45	0.65			
Yearling Height	0.38	0.63			
Yearling Scrotal	0.35	0.65			
Docility	0.29	0.60			
Milk	0.24	0.32			
Mature Weight	0.53	0.58			
Mature Height	0.56	0.56			
Carcass Weight	0.54	0.48			
Carcass Marbling	0.65	0.57			
Carcass Rib	0.58	0.60			
Carcass Fat	0.50	0.56			

Hereford-based Predictions				
Trait	ra from NBCEC			
BW	0.43			
ww	0.32			
YW	0.30			
MILK	0.22			
CED	0.43			
CEM	0.18			
FAT	0.40			
MARB	0.27			
REA	0.36			
SCROTAL	0.28			

MBV BIF Accuracy				
% GV	BIF Accuracy			
1	0.005			
4	0.020			
9	0.046			
16	0.083			
25	0.132			
36	0.2			
49	0.286			
	% GV 1 4 9 16 25 36 49			

MENDELIAN SAMPLING How many possible genetically different full sibs from a mating? 1,152,921,504,606,850,000 Every one has the same Pedigree Index EPD

Calving Ease

- Two yearling bulls with a +5 CED EPD with accuracy of 0.2.
 - Possible change of 6
- With the addition of more information their EPDs change
- One favorably and the other unfavorably
- More information earlier allows you to choose animals more accurately

Example o	Example of RobustnessBreed					
Breed	ww	YW				
AN	0.41	0.54				
AR	0.28	-0.36				

Summary

- For commercial bull buyers the fundamentals are still in place
- Phenotypes are still critical to collect
- Genomic information has the potential to increase accuracy
 - Proportional to %GV
- Impacts inversely related to EPD accuracy
- Multiple trait selection is critical and could become more cumbersome
 - Economic indexes help alleviate this
 - Use index values that meet your breeding objective

Summary

- □ Phenotypes are still critical to collect.
- □ Predictions will continue to improve.
- □ Lower cost SNP panels will enter the market place.
- □ This arena is far from stagnant!