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Introduction 

Effective replacement heifer development is a critical segment of the integrated 
management program in an efficient beef cow production system.	
  The most critical factor 
determining the success of any heifer development program is nutrition. Most efforts are 
concentrated in providing the right amount and quality of feed to achieve gains from 1.5 to 
2.0 lb/day, so heifers can reach 65% of their mature BW by the day of breeding.  

 
Approximately 80% of the U.S. cow-herds are spring calving, which means that 

producers utilizing estrous synchronization and AI are keeping their heifers in a feedlot 
environment until heifers are inseminated. Immediately following AI, heifers are typically 
moved to pasture. It is known that maternal recognition of pregnancy takes place around d 15 
- 17 post-insemination and that transporting animals near this time compromises conception 
rates. However, moving heifers within the first 5 days post-insemination does not cause this 
reduction. Although, research suggests that conception rates are compromised when heifers 
are placed on early growth pasture forages. We hypothesized that feeding this high moisture 
pasture forage at turnout is limiting DMI which in turn causes a temporary energy deficiency 
that results in temporary heifer weight loss during the critical stages of early embryonic 
development and maternal recognition of pregnancy. Therefore, it is beneficial to ensure 
heifers maintain the same plane of nutrition after breeding, at least until day 25 when the 
embryo should be completely attached to the uterus. If this is true, maintaining a positive 
plane of nutrition on heifers after breeding will increase 1st service conception rates, 
improving herd fertility and longevity. 
 

Direct relationships between post-insemination nutrition and fertility in cattle 

 It is well established that general under-nutrition during the prepartum and 
postpartum period negatively impacts pregnancy success and reproductive efficiency in beef 
cattle (Diskin et al., 2003 review).  Recently however, we have initiated a series of studies on 
a potential cattle management strategy that result in a period, albeit it brief, of nutritional 
insult immediately following insemination and investigated the potential impacts of this 
abbreviated period of negative energy balance on fertility.  Many spring-born heifers are 
developed from weaning to breeding in a dry-lot scenario and fed a diet consisting of a 
combination of forage and concentrate needed to gain approximately 1.5 lb. per day, 
targeting a final weight of 65% of estimated mature body weight at the time of breeding.  
Often estrous is synchronized and AI is conducted while in the dry-lot to better facilitate 
protocol implementation.  Immediately following AI, heifers are often moved to pastures to 
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expose them to clean-up bulls, take advantage of lush spring forage, and reduce the incidence 
of embryonic loss associated with handling and moving animals at later stages of early 
gestation (day 5 through implantation; Harrington et al., 1995). Such an immediate change in 
nutrition, due to shift in diet delivery method and/or quality and quantity of nutrients, may 
negatively impact metabolism, body weight gains, and ultimately reproductive efficiency in 
these beef heifers.   

 Recently, investigators at Purdue University and the University of Wyoming jointly 
examined the role of post-insemination nutrition on AI pregnancy rates in beef heifers (Arias 
et al., 2012).  At two locations (Purdue; n = 53, Wyoming; n = 99) heifers were fed at 125% 
of NRC maintenance requirements (approximate ADG of 1.5 lbs/d) from weaning until 
estrous synchronization and AI.  Immediately following estrous synchronization and AI, feed 
delivery to heifers was tightly controlled as heifers were specifically fed diets formulated to: 
1) maintain pre-breeding plane of nutrition (125% of maintenance requirements; GAIN), 2) 
100% of maintenance requirements (Maintain), or 3) 80% of maintenance requirements 
(LOSE). Heifers remained on these diets for 21 days following AI.  Heifers that returned to 
estrus during the 21-day dietary treatment were inseminated and following the conclusion of 
the dietary treatment all heifers were comingled and placed with fertile bulls.  Pregnancy 
diagnosis was conducted at 30 days post-AI to determine pregnancy success following the 
initial AI and 30 days after the breeding season to determine 2nd service AI pregnancy rates 
and overall breeding season pregnancy rates.  Although limited numbers prevented detection 
of statistical differences between treatments within location, when locations were combined 
(Table 1) contrast analyses revealed that heifers that were fed to continue their pre-breeding 
plane of nutrition (GAIN treatment) for 21 days post-AI had greater (P = 0.04) AI pregnancy 
rates compared to both groups of heifers that had a decrease in dietary plane of nutrition 
(Maintain and LOSE heifers). In addition, heifers in the maintain and lose treatments had 
decreased (P < 0.05) 2nd service AI pregnancy rates and decreased (P < 0.05) overall 
breeding season pregnancy rates. These results indicate that failing to maintain a pre-
breeding plane of nutrition that results in heifer gain following insemination reduces the 
probability of AI pregnancy success.  The results are in agreement with results reported by 
Perry et al. (2009).  In a series of studies, these investigators demonstrated that developing 
heifers in a dry-lot scenario and then immediately moving heifers to pasture following AI can 
result in reduced pregnancy rates to AI, if heifers lose weight once placed on pasture.  
Moreover, if heifers transitioned to pasture immediately following AI are supplemented with 
a concentrated feedstuff such as distillers grains to prevent post-AI weight loss, pregnancy 
rates are not negatively impacted.  Interestingly, Perry et al. (2009) reported that heifers 
transitioned from a feedlot to pasture can loose greater than 3 lbs per day in body weight in 
the first week after entry to the pasture.  Hence, with such a dramatic nutritional insult, 
concomitant with the likely alterations in metabolic signaling occurring in response to this 
insult, it is not surprising the reproductive performance is negativity impacted. 
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Table 1. Effect of post-AI nutrition on AI pregnancy rates in yearling heifers. 
 Ave. Daily Gain, lbs.  AI Pregnancy Rate1,2, % (n) 

 Wyoming Purdue  Wyoming3 Purdue4 Combined5 

Gain 
(NEm 125% 

NRC) 
1.44 2.09  67.6 (23/34) 94.7 (18/19) 77.4 (41/53) 

Maintain 
(NEm 100% 

NRC) 
0.12 0.15  46.9 (15/32) 75.0 (12/16) 56.3 (27/48) 

Lose 
(NEm 80% 

NRC) 
-0.83 -0.75  51.5 (17/33) 77.8 (14/18) 60.8 (31/51) 

1 Location; P = 0.002 
2 Location x Treatment; P = 0.73 
3 Wyoming AI Pregnancy Rate; Contrast of Gain vs. Others; P = 0.09 
4 Purdue AI Pregnancy Rate; Contrast of Gain vs. Others; P = 0.13 
5 Combined AI Pregnancy Rate; Contrast of Gain vs. Others; P = 0.04 
 

 We recently conducted a study in beef heifers to further elucidate the direct effects of 
an immediate change in nutrition at AI on early embryonic development.  The objective of 
our study was to determine if post-AI nutrient restriction directly impacted early embryo 
quality and the number of live/dead blastomeres.  It was hypothesized that day 6 embryos 
collected from heifers that were fed restricted, sub-maintenance diets would have poor 
embryo quality (assessment of quality grade) with fewer total blastomeres and greater 
proportion of dead blastomeres than heifer fed diets that allow weight gain post-insemination.  
This study was conducted at two locations, University of Minnesota’s North Central 
Research and Outreach Center (UMN) and South Dakota State University (SDSU).  All 
heifers were on a common diet during development.  Estrus was synchronized and timed-AI 
was conducted.  On the day of AI, heifers were placed in one of two nutritional treatments.  
At UMN, half of the heifers continued on the pre-AI diet (approximately 120% NRC 
requirements), targeting an ADG of 1.5 lbs/hd/d (treatment designation = GAIN).  The 
remaining heifers were fed at 80% NRC requirements (treatment designation = LOSE).  At 
SDSU, half of the heifers continued on the pre-AI diet (approximately 125% NRC 
requirements).  The remaining heifers were fed at 50% NRC requirements (treatment 
designation = LOSE).  Dietary treatments were fed until embryo collection was done using 
non-surgical embryo flush techniques six days after AI. Recovered embryos were 
microscopically evaluated, classified by developmental stage (morula, blastocyst, expanded 
blastocyst) and graded on a 1 to 5 scale (1 = excellent, 2 = good, 3 = fair, 4 = poor, and 5 = 
degenerate) to evaluate embryo quality.  Then embryos were transferred to the laboratory 
where number of dead blastomeres and total number of blastomeres was evaluated using 
epifluorescent staining. For purposes of this review, results across both locations were 
combined to illustrate the effects of nutrient restriction on early embryonic development.  
Nutrient restriction immediately following AI resulted (Table 2) in poorer quality embryos 
that were developmentally retarded as indicated by being at an earlier stage of development 
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and having fewer total blastomeres (Table 2).  In addition, embryos from nutrient restricted 
heifers had a decreased (P = 0.01) percentage of live blastomeres.   

 
Table 2.  Effect of post-AI nutrition on day 6 embryo development 

TRT na 
% Embryos 
Recovered 

Embryo 
Stageb 

Embryo 
Qualityc 

Dead 
Cells (n) 

Total 
Cells (n) 

% Live 
Cells 

GAIN 46 70.8  
(46/65) 4.6 ± 0.1 2.0 ± 0.2 7.8 ± 0.9 70.6 ± 5.6 83.3 ± 3.0 

LOSE 42 62.1 
(42/66) 3.8 ± 0.2 2.8 ± 0.2 9.7 ± 1.0 48.9 ± 3.9 71.1 ± 4.1 

P-
value . NS < 0.01 0.02 0.42 0.03 0.01 

a Defined as embryo number; not heifer with the exception of recovery rate 

b Stage of development (1-9;1 = UFO; 9 = expanded hatched blastocyst; per IETS 
Standards)  
c Quality of embryo (1-5;1 = excellent; 5 = degenerate; per IETS Standards)  
 
 
 These results suggest that the early embryo, oviduct, and uterus are sensitive to 
immediate changes in nutrition.  It is proposed that the immediate retardation of embryonic 
development observed is likely responsible for reduced pregnancy rates due to an inability of 
the embryo to successfully signal maternal recognition of pregnancy at later stages of 
development.  Currently, the mechanisms by which an abrupt change in nutritional inputs 
immediately following AI affects early embryonic development are not definitive and 
numerous physiological and endocrine processes may contribute.  Further evaluation of 
circulating progesterone concentrations, IGF-1, and IGF-binding proteins in this study are 
currently being conducted.  Given the importance of nutritional hormones (e.g. IGF-1, 
glucose, and insulin) on early embryonic development (Block et al., 2011), diet induced 
alterations in these factors could influence embryo health and ability to establish pregnancy. 
Lastly, the contribution of oviductal and uterine histotroph to embryo development is critical.  
It is unclear if an immediate change in nutritional status can impede histotroph secretion or if 
nutritional status can dictate composition of the histotroph.  Further studies are warranted to 
investigate this potential phenomenon. 

Take Home Message 

 Without question, nutrition mediates reproductive function.  It is well established that 
insufficient nutrition in cattle compromises general reproductive efficiency.  Specifically in 
cattle, undernourishment can alter the secretion and circulating amount of various metabolic 
hormones including insulin, IGF-1 and IGFBP, GH, and leptin.  Alterations in these 
hormones have direct effects on the ovarian follicles and the oocyte to compromise fertility.  
In addition, nutrient restriction following breeding appears to alter oviductal and uterine 
support for embryo growth and pregnancy maintenance.  Therefore, to maximize fertility, 
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nutritional inputs to reproducing beef cows must be managed to allow for the animal to be in 
a positive energy balance.  Caution is warranted however as over-nutrition may also 
compromise various reproductive parameters.   
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