

Today's Fed Cattle

- 1990 Vs. 2010
- Fed Cattle (steers and heifers):
 - 14% larger at slaughter
 - Spend 8 more days on feed
 - Gain weight 16% faster
 - 7.6% more efficient
 - 0.50 less lbs feed/lb gain

Relationships

- Are cows getting bigger?
 - If so, how much?
- Does that affect their nutrient requirements?
 - If so, how much?
- · Does it affect their productivity?
 - If so, is it enough to matter?
- Does it affect their ability to meet their requirements by grazing?

Indicators of cow size 1

- Trend in genetic predictors of growth rate and size
 - EPD
 - Weaning weight
 - Yearling weight
 - Mature weight
 - Mature height

Indicators of cow size 2

- USDA ARS Germplasm Evaluation Program
 - Meat Animal Research Center, Clay Center, Nebraska
 - Direct head-to-head comparison of sire breeds
 - Allowed to express breed potential
 - No limitation on nutrient intake
 - 2009 data

Mature cow weights

Breed	5-year-old weight, lb
Hereford	1,419
Angus	1,410
Red Angus	1,409
Simmental	1,404
Gelbvieh	1,323
Limousin	1,391
Charolais	1,371

MARC cow weights

- Average cow size was 1390 lb.
- Breeds differ
- Are continental breeds still bigger than British breeds?

Indicators of cow size 3

- Common logic
 - "Mature cow weight = weight of finished offspring"
- Meat Animal Research Center
 - Germplasm evaluation program
 - 37,000+ cows
 - Mature Cow Weight correlated with hot carcass weight of progeny (0.81)
 - Progeny hot carcass weight = 0.599 * (mature cow weight)

Nephawe et al., 2004

Mature Cow Weights (Focus on Feedlots)

Estimated Mature Cow Weight Based on Steer Market Weight

Year	Steer Market Wt	Steer Carcass Wt	Mature Cow Wt
1990	1186.8	735.8	1228
2010	1339.5 830.5		1386
		Diffe	erence = 158 lb.

¹Carcass weight = market weight * 0.62 ²Mature cow weight = carcass weight/ 0.599

K-State Focus on Feedlots; Nephawe et al., 2004

Mature Cow Weights (Federally Inspected Slaughter)

Estimated Mature Cow Weight Based on live slaughter weights (Steers and Heifers)

Year	Fed Inspected Live Wt	Steer Carcass Wt	Mature Cow Wt
1990	1140	706.8	1179
2009	1296	806.1	1346
		Diffe	rence = 167 lb.

¹Carcass weight = market weight * 0.62 ²Mature cow weight = carcass weight/ 0.599

NASS, 2009; Nephawe et al., 2004

Cow Size vs. Steer Carcass Weight

Mature Cow Wt	Estimated Steer Carcass Wt
1000	599
1200	719
1400	839
1600	958

Estimated Steer Carcass weight = 0.599 * Mature Cow weight

1000 lb cow = carcass that is too small! 1600 lb cow = carcass that is too big!

Nephawe et al., 2004

How big are your cows?

- Can you weigh them?
- Is there a subset you get weights on?

Nutrient requirements

- · Increase as cow size increases
 - Not in direct proportion to weight
 - In proportion to surface area
- Requirements increase at a slower rate than weight

 $NE_m = 0.007 \text{ BW}^{0.75}$

How do we get more nutrients in a cow using the same forage?

Increased intake

Production capability

• How much more does a bigger cow have to produce to cover her higher feed bill?

Feed consumed per lb weaned

Cow wt, lb	Annual DM intake	500	550	600	650
1200	9,353	18.7	17.0	15.6	14.4
1400	10,406	20.8	18.9	17.3	16.0

1400 lb. cow needs 50 lb. more weaning weight to match "feed efficiency" of 1200 lb. cow

Is this likely?

Angus EPD genetic trend for weaning weight
26 lb increase over past 20 years

A cow's biological type determines her nutrient requirements:

What is a "biological type"?

- Group of breeds based on common characteristics
 - Size and growth rate traits
 - Maternal traits
 - Carcass traits

A cow's biological type determines her nutrient requirements:

- Large size or high milk production dramatically increases nutrient requirements.
 - Thus, the most important environmental characteristic to match cows to is the nutrient supply that the forage provides.
- Western range/grazing resources vary tremendously in amount of forage/level of nutrition.

Matching biological types to forage resources

- Extremes in biological type seldom fit, intermediate types are usually most efficient
- Study conducted in northern Montana 5 breed combinations (Kress, 1993):
 - 1. Straightbred Herefords
 - 2. Angus X Hereford
 - 3. ¼ Simmental X ¾ Hereford
 - 4. ½ Simmental X ½ Hereford
 - 5. ¾ Simmental X ¼ Hereford

Matching biological types to forage resources

- Scarce or abundant resources move the best biological type toward the extremes, but not to the limit
- · Study conducted at 2 locations in Canada
 - Manyberries, Alberta: semiarid rangeland
 - Brandon, Manitoba: humid, high-production pastures

Additional Comments

- Risk: Difference in WW/CE between biological types is greater in poorer forage conditions
 - Making a mistake in choosing biological type will have greater consequences in poorer forage conditions

	3.671	Availability of Cheap Feed for Cow Herd		
Mature Size	Milk Level	High	Medium	Low
Н	Н	61	3 (avoid)	1 (avoid)
H	M	71	4 (avoid)	2 (avoid)
H	L	8 ³	5 (risky)	3 (avoid)
M	H	7^{2}	5 (risky)	3 (avoid)
M	M	8 ² 9 ³	61	4 (risky)
M	L	9 ³	71,3	5 (risky)
L	Н	9^{2}	7^{2}	4 (risky)
L	M	10^{2}	8 ²	5 (risky)
L	L	113	9^{3}	6 ¹

¹Values of 6 (or higher values) match biological type to feed resources for all purpose

Stocking Rate

- · Animal unit equivalents
 - -1000 lb cow = 1.0 AU
 - -1200 lb cow = 1.15 AU
 - -1400 lb cow = 1.3 AU

Stocking Rate Examples

Cow Wt	AUE	Acres for 8 mo. Grazing season
1000	1.0	20
1200	1.15	23
1400	1.3	26

Stocking Rate Examples

Cow Wt	AUE	Acres for 8 mo. Grazing season	Cows per 640 acres
1000	1.0	20	32
1200	1.15	23	28
1400	1.3	26	25

Conclusions

- Cows have gotten bigger
 - 200 lb increase over 2 decades
 - Genetic selection for growth has played a role
- · Bigger cows need more feed to meet nutrient requirements
 - They may not fit limited range resources
- · Bigger cows need to wean bigger calves to pay their feed bill
- Improved management is needed to match calf weaning weight to cow size

Going Forward: Selection and Management

- New generation of selection tools:
 - Angus- Cow Energy Value EPD (\$EN)
 - Red Angus- Maintenance Energy EPD
- Management
 - Beware of increasing stocking rate
 - Weigh and body condition score cows

You can't manage what you don't measure!

Praises of the inglest control of the problem of th

What else does this mean?

- Other management to alter nutrient supply:demand
 - Grazing management
 - Range improvements
 - Strategic supplementation
 - Adjust calving and weaning dates
- Manage cow size
 - Cull big cows
 - Replacement heifer development/nutrition

