Using Partial Confinement Systems for Beef Cattle Production

Karla H. Jenkins Cow/Calf, Range Management Specialist

Availability of Grass Reduced

- Chronic Drought Conditions
- More crop production acres
- Urbanization
- · Increased value of grass

Availability of Grass Reduced

- · Increased Value of Grass
 - Rethinking the utilization of grass
 - High quality grass for gain
 - Residues for maintenance

Confinement Feeding Cows

Research vs. Production

- First two years research study was total confinement
 - Studied all phases of the production cycle in confinement
- Last year and this year research is a systems approach
- Every producer has a unique system and therefore must determine what will work best for any given operation

Thinking Outside the Box

Thinking Outside the Box

Thinking Outside the Box

Thinking Outside the Box

Limit Feeding Confinement Cows

- Energy dense by products can be mixed with low quality crop residues
- Dry matter intake can be limited
- Cow condition can be maintained because nutrient needs are being met

Key Concepts for Limit Feeding Cows in Confinement

ngredient¹	TDN (%DM)
Corn distillers grains (wet, dry, modified) and solubles	108
Sugar beet pulp	90
Soyhulls	70
Synergy	105
Corn gluten feed	100
Midds	75
Corn	83
Wheat straw/corn stalks	43
Meadow Hay	57

Diet (DM	Ingredients	Late	Lactating	Cow with
ratio)		Gestation	Cow	60 d old
		Cow		calf
		Dry	matter intal	ce, lb
57:43	Distillers	15.0	18.0	20.0
	grains:straw			
30:70	Distillers	19.2	23.0	25.6
	grains:straw			
40:20:40	Distillers	15.4	18.5	20.6
	grains:straw:			
	silage			
20:35:45	Distillers	14.6	17.5	19.4
	grains:straw:			
	beet pulp			

Limit Feeding Lactating Cows in Confinement

Year 1

- Lactation diet after 90 days (DM basis)
- 60% Wet Distillers
- 40% Straw/stalks
- Early weaned cows 15 lb DM
- Late weaned pairs 22 lb DM

Year 2

- Lactation diet after 90 days (DM basis)
- 40% Wet Distillers
- 20% Straw/stalks
- 40% Corn silage
- Early weaned cows 15.5 lb DM
- Late weaned pairs 24.9 lb DM

	ARDC		PR	EC	P-value		
Item	EW ¹	NW ²	EW ¹	NW ²	Weaning	Location	W×L
Cow BW, lb							
Prebreeding	1200ab	1180 ^b	1227a	1212a	0.27	0.07	0.89
Ending	1205bc	1165°	1302ª	1232 ^b	0.02	<0.01	0.48
Cow BW change, lb	6 ^{bc}	-15°	74 ª	20 ^b	<0.01	<0.01	0.14
Cow BCS ³							
Prebreeding	5.5a	5.5a	5.2ab	5.2 ^b	0.92	< 0.01	0.63
Ending	5.4 ^{ab}	5.3 ^b	5.6ª	5.6ª	0.42	0.03	0.42
Cow BCS ³ change	-0.1 ^b	-0.2 ^b	0.4ª	0.4ª	0.38	<0.01	0.38

Calf BW, lb Early 274 285 283 271 0.95 0.78 0.2: weaning Normal 470 ^b 518 ^a 494 ^{ab} 465 ^b 0.38 0.18 <0.0 weaning Calf ADG, lb 1.73 ^{bc} 2.06 ^a 1.86 ^b 1.70 ^c 0.09 0.02 <0.0 EW NW 1.80 1.88 ¹EW = early weaned at 90 d of age.		AR	DC	PF	REC		P-value	
Early 274 285 283 271 0.95 0.78 0.22 weaning Normal 470 ^b 518 ^a 494 ^{ab} 465 ^b 0.38 0.18 <0.0 weaning Calf ADG, Ib 1.73 ^{bc} 2.06 ^a 1.86 ^b 1.70 ^c 0.09 0.02 <0.0 EW NW 1.80 1.88	Item	EW ¹	NW ²	EW ¹	NW ²	Weaning	Location	Wxl
weaning Normal 470 ^b 518 ^a 494 ^{ab} 465 ^b 0.38 0.18 <0.0	Calf BW, lb							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		274	285	283	271	0.95	0.78	0.21
EW NW 1.80 1.88 ¹EW = early weaned at 90 d of age.		470 ^b	518ª	494 ^{ab}	465 ^b	0.38	0.18	<0.01
1.80 1.88 ¹EW = early weaned at 90 d of age.	Calf ADG, lb	1.73 ^{bc}	2.06ª	1.86 ^b	1.70°	0.09	0.02	< 0.01
¹ EW = early weaned at 90 d of age.		EV	V	N	w			
		1.8	30	1.	88			
2004 - annual control of 205 d of an	1EW = early we	aned at 90	d of age.					
-invv = normai weaned at 205 d of age.	2NW = normal	weaned at 2	205 d of a	ige.				

Energy Savings vs Management Tool

 Similar performance at equal intake suggests early weaning did not result in feed energy savings but may allow more flexible management options

Impact of Early Weaning on Pregnancy Rate

	AR	DC	PR	EC
	EW	NW	EW	NW
% Pregnant	89.9	85.4	92.5	95.2

Calf Health in Confinement

- Modified Sandhills Calving System
- Calves with 2 week age difference not allowed in the same pen
- No co-mingling of calf ages until after the youngest calves were over 4 weeks old

Calf Health Issues

- · Minimal Health Issues prior to early weaning
- Shade is important for summer calves
- Exposure to temperature changes, newly arrived feeder calves, and decreased passive immunity caused respiratory challenge at both locations in different years

Considerations for Breeding in Confinement

- Cows may be close to handling facilities
 Incorporating synchronization and Al
- Bulls need 15-18 lb TDN and another 2 ft. of bunk space

Our Experience

- Calves learned to eat with their mothers
- Learned what the feed truck was

Management Considerations

- - Calves learned to drink from trough within a few days of age.

 – No cases of calves dehydrating during summer.
- · Bunk space
 - 2 ft/hd (adult cattle) & 1-1.5 ft/hd (calves).
- Pen space
 - 350 400 ft²/hd.

Confinement Feeding outside the Feedlot

- · Limit feeding on pasture
 - Cattle will continue to consume forage if allowed
 - Pastures could continue to suffer overgrazing
 - Use winter feeding ground, crop ground, pivot corners

	AR	DC	PF	REC
tem	CS	DL	CS	DL
Initial	1222	1217	1257	1247
Ending	1125	1339	1271	1307
ARDC Initial			PRI Initial	<u>C</u>
SEM = 80 P = 0.83			SEM = 137 P = 0.69	
Ending SEM = 64			Ending SEM = 145	
P = 0.03			P = 0.34	

Scenarios		GS	L	GS	L					
			March C	alving	June Ca	lving	Confine	ement	Confineme	nt/Stalk
Grazing	Grass	d	180		215					
		cost		300.60		359.05		0.00		0.00
Grazing	Stalks	d	120		195				130	
		cost		106.80		173.55		0.00		115.70
	Hay	Ibs	1645							
		cost		77.32		0.00		0.00		0.00
	Straw/sta	lbs					2738		1763	
		cost		0.00		0.00		136.90		88.15
	DGS	lbs	45		270		4106		3294	
		cost		3.87		23.22		353.12		283.28
	Supp. Day	d	45	9.00	270	54.00			130	26.00
	Mineral			10.00		10.00		10.00		10.00
	Labor	d	320	32.00	95	9.50	365	164.00	235	118.75
	Weaning	lbs	521		557		480		580	
	Cow cost			250.00		250.00		250.00		250.00
Total Cost per Cow		789.59		879.32		914.02		891.88		
UCOP at	100% wea	ned/expo	sed	1.516		1.579		1.904		1.538
UCOP at	95% wean	ed/pregn	ent	1.595		1.662		2.004		1.619
UCOP at	85% wean	ed/expos	ed	1.783		1.857		2.240		1.809

Summary

- Energy density is the key to limit feeding
- Lactation increases energy needs considerably
- Consider early weaning options
- Confined calves must be able to reach water and feed
- Limit fed cows need ample bunk space and a consistent feeding routine

Summary Cont.

- Each producer needs to evaluate their resources and system options to see what might work best
- As prices change systems should be reevaluated

