

Why Test for Efficiency?

- Bob Weaber (2011) estimated that a 10% improvement across the entire feedlot industry would reduce feed cost \$1.2 billion in
- A 1% improvement in feed efficiency has the same economic impact as a 3% increase in rate of gain
- Feed cost are large portion of beef production
 - Feedlot
 - Backgrounding
 - Cow/Calf

Cow Efficiency

Importance of Cow Feed Efficiency ≈70% of feed resource for the cow herd

- ≈70% of feed resource for maintenance

≈50% of all feed is used to maintain the cow herd

Doubts of Feed Efficiency Testing

- Environmental Effects
 - Confined space versus rangeland
 - Pen mate competition
- · Growth curve
- Age and hormone effects
- · Grazing versus bunk feeding
- Diet
 - Forage versus concentrate
 - Fill regulated or energy feedback
- Gain versus maintenance
- · Gain versus milk

Efficiency

- Input divided by output (or vice versa)
 - Example is Feed / Gain

Cow Efficiency

• A cow must convert the forage resource she is given to a high value calf.

What is an efficient cow?

Cow Efficiency (output)

- Must grow enough early to get pregnant early for her first calf
- Low rates of dystocia
- Rebreed annually for multiple years
- Produce pounds of a marketable calf
 - Minimal sickness
 - Efficient growing calf
 - High quality beef product at harvest

Cow Efficiency (input)

- Forage resource
 - Grass
 - Winter grazing
 - Harvested feed

Cow Efficiency

• Thus Cow efficiency is a whole life cycle

$$A + B + C + D + E + F + G + H$$

 $X + Y + Z$

INDEX

Genetics

- AHA National Reference Sire Program
 - Over 200 sires tested
 - Over 10,400 progeny with data
- Olsen Steers tested in GrowSafe facility
 - 71 sires
 - 1777 steer progeny

Genetics

- Actual Data from June 14, 2012 to August 25, 2012 test (72 day)
- Al sired steers out of 4 year old or older cows
- 13 sires
- 209 steers

Genetics

- ADG 5.02 lb/day
- In value of \$1.45 /lb
- Out value of \$1.35 /lb
- Feed Cost \$283.02 /DM ton

Through August 25, 2012.						
Sire In Weight		In Value @ \$1.45/lb	ADG			
Α	759	\$1100.77	5.43			
В	718	\$1041.31	5.25			
С	740	\$1072.65	5.27			
D	728	\$1055.37	5.20			
Е	680	\$986.48	4.81			
F	706	/ \$1023.37 \	4.93			
G	733	\$1063.21	5.03			
Н	685	\$993.03	4.71			
I	678	\$982.56	5.07			
J	731	\$1059.23	4.88			
K	764	\$1108.41	5.01			
L	727	\$1053.88	4.70			
M 747		\$1083.56	4.80			

Valu	Value Change of Steers Fed Through the Olsen GrowSafe Facility June 14, 2012 Through August 25, 2012.							
Sire	In Weight	In Value @ \$1.45/lb	ADG	Out Weight	Out Value @ \$1.35/lb	Feed Cost @\$283.02 / DM ton	Value Change	
A	759	\$1100.77	5.43	1148	\$1550.16	\$295.33	\$154	
M	747	\$1083.56	4.80	1094	\$1476.36	\$287.96	\$105	
			$\overline{}$	•			\bigcirc	

- •Similar Beginning Weight
- •Large difference in ADG
- •Extra gain offset the extra feed cost

Valu	Value Change of Steers Fed Through the Olsen GrowSafe Facility June 14, 2012 Through August 25, 2012.								
Sire	In Weight	In Value @ \$1.45/lb	ADG	Out Weight	Out Value @ \$1.35/lb	Feed Cost @\$283.02 / DM ton	Value Change		
Е	680	\$986.48	4.81	1025	\$1384.13	\$263.61	\$134		
I	678	\$982.56	5.07	1042	\$1406.19	\$299.75	\$124		

- •Similar Beginning Weight
- •Large difference in feed cost \$36.14
- •Feed cost far exceeded extra gain

Genetics

- Moderate to High heritability for change
 - Phenotype
 - Marker Assisted
- · Marker Base estimates of heritability
 - Four populations of beef cattle
 - 847 Hereford cattle in 10 contemporary groups
 - Population specific

Marker-base estimates of heritability (h^2) for ADG, DMI, MMWT and RFI						
	DMI	MMWT	ADG	RFI		
	(lb)	$(lb^{.75})$	(lb/d)	(lb/d)		
Breed	h^2	h^2	h^2	h^2		
Hereford	.41	.50	.27	.45		
USMARC	.35	.47	.30	.49		
Simmental x	.27	.48	.23	.32		
Angus						
Angus	.35	.49	.19	.21		

ADG: average daily gain, DMI: dry matter intake, MMWT: mid-test metabolic body weight, and RFI: residual feed intake.

Saatchi et al.: QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies. BMC Genomics 2014 15:1004

2015 Range Beef Cow Symposium, Loveland, Colo.

Management Efficiency

- Match genetics to your goals and resources
- More Growth equals ?
 - Breed trends versus Feedlot or Commercial cow/ calf performance
- More Milk equals?
 - Weaning rate
 - Breed trends
- More Muscle equals ?

Opportunity

- Genomic research
 - Health as it relates to efficiency
 - Genomic abnormalities and embryonic death
 - Weaning rate
- Continued testing of phenotypes
- Better data sets to compare cow lifetime productivity

So What?

- Room for improvement in production efficiency and specifically feed efficiency
- Careful evaluation of growth, muscle, and milk in the cow herd
- Improve digestion, metabolism, or health
- Selection for feed efficiency does not appear to have negative effects on cow fertility and weaning rates

Summary

- Visual appraisal can not determine feed efficiency
- · More feed intake data is needed
- Better evaluation of correlations to other traits with bigger data sets
- Index to combine traits

www.beefefficiency.org

