COW SUPPLEMENTATION: GETTING THE BEST BANG FOR YOUR BUCK

Ken Olson Extension Beef Specialist

How do we get the best bang for the buck?

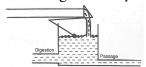
- 2 aspects:
 - Biology: Use the right feeds to provide the right nutrients
 - Economics: price the best feeds to provide the right nutrients

Low Quality Forage

- 7% or less crude protein
- High in fiber
- Can be grazed or harvested

Ruminant Digestive Anatomy

- 4 compartment stomach
 - 1. Reticulum
 - 2. Rumen
- Site of microbial fermentation
- 3. Omasum
- 4. Abomasum


Reticulum and Rumen of the Cow Stomach Stomach South Dakota State University College of Agriculture and Biological Sciences

Value of microbial fermentation

- Microbes provide enzymes that digest fiber
 - Releases energy shared by microbes and the cow
 - Cow absorbs volatile fatty acids (VFA)
 - Releases other nutrients encased by fiber
 - Sugar, starch, lipids also shared

Ruminant Digestive Physiology

- Fill determines intake in lower quality diets
- Digestion and passage empty the rumen
 - Particle size reduction key to passage
 - Rates determine how quickly it empties
- Rates of digestion and passage slower in lower quality feeds

Forage Intake Approximations

=		
Type of forage	Digestibility (%)	Intake (%BW)
Lush pasture	>65	2.75-3.5
Mod. Qual. Past.	60	2.5-3.2
Good Qual. Grass hay	55	2.0-2.5
Mod. Qual. Grass hay	45-50	1.5-2.0
Poor Qual. Grass hay	40	1.0-1.5
Straw	35	<1.0
SOUTH DAKOTA STATE UNIVERSITY		

Expectations of a Supplement

- Overcome nutrient deficiency
- Overcome limitations on digestion and intake
 Improve microbial function
- Feeding for 2: microbes and the cow

Some factors affecting success of achieving supplementation goals

- Type of supplement
- Supplemental feedstuffs
- Comparative pricing

Type of supplement

- Supplements typically classified into:
 - Protein supplements
 - high in protein relative to other nutrients
 - examples: soybean meal, cottonseed meal
 - Energy supplements
 - low in protein relative to other nutrients
 - examples: corn, barley, sugar beet pulp
 - Both contain protein and energy
 - a matter of relative concentration

Low Quality Forage

- 7% or less crude protein
 - OR
- TDN:CP > 7
- High in fiber

What type of supplement should be used?

- For low quality forages, protein is the first limiting nutrient
- Energy available in the forage (fiber) is of little use without protein to stimulate microbial digestion

Protein supplements with low quality forage

- Provides nitrogen for rumen microbe growth
- Promotes improved fiber digestion
- · Rates of digestion and passage are increased
- Promote increased intake of low quality forage

Associative Effects

- Interaction between feeds in combination that alters nutritional value compared to each fed alone
 - Results in performance different than expected from the individual feeds

Positive Associative Effect

- Increased nutrient value greater than the addition of nutrients from a supplement
 - Increase in digestibility and intake of low-quality forage

Response to grain-based energy supplements

- Depressed fiber digestion
 - Microbial growth not stimulated
 - Microbial shift from fiber to starch digesting bacteria species
 - Fiber digesting bacteria digest starch first
- Decreased forage intake
- No net increase in energy intake

Negative Associative Effect

- Reduced nutritional value of the diet resulting from combining high starch feeds with low quality forages
 - digestibility and intake of dietary fiber decreased by changes in the rumen microbes

Effect of Protein Concentration on Forage Utilization by Cattle

	% CP in supplement			
	0	12	27	41
Fiber digestion, %	37.9	29.9	39.9	38.6
Forage intake, %BW	.9	.8	1.4	1.2

from DelCurto et al., 1990. J. Anim. Sci.
South Dakota State University
College of Agriculture and Biological Sciences

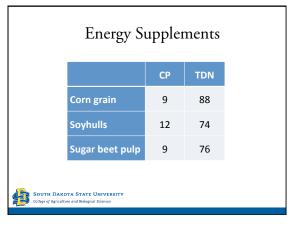
Effect of Protein Concentration on Cow-Calf Performance

	% CP in supplement		
	13	25	39
Weight loss, lb	-193	-122	-97
BCS loss	-1.8	-1.4	7
Pregnancy rate, %	87	93	93

from DelCurto et al., 1990. J. Anim. Sci.

SOUTH DAKOTA STATE UNIVERSITY
College of Agriculture and Biological Stiences

Characteristics of Various Potential Supplemental Feedstuffs


High Protein Supplements

	СР	TDN
Corn grain	9	88
Soybean meal	49	84
Cottonseed meal	46	77

SOUTH DAKOTA STATE UNIVERS
College of Agriculture and Biological Sciences

Moderate Protein Supplements

	СР	TDN
Corn grain	9	88
Distiller's grains	31	96
Wheat middlings	17	75
Corn gluten feed	23	80
Field peas	23	85

Comparative Pricing of Potential Supplemental Feedstuffs

Pricing Supplements on an Equal CP Basis

- · Adjust for differences in
 - Feed price, delivered
 - Crude protein content
 - DM content
- Calculate \$ per ton of CP

Cost on Protein Basis

	Feed \$/ton	DM (%)	CP (%)	CP \$/ton
Soybean meal	290	89	49	665
DDGS	120	91	31	425
WDGS	42	36	31	376
Alfalfa hay	90	89	18	562
20 % range cake	180	85	20	1059
30 % range cake	250	85	30	980
27 % tub	750	95	27	2924
SOUTH DAKOTA STATE UNIVERSITY College of Agriculture and Biological Sciences				

Pricing Wet vs. Dried Distiller's Grains

- Adjust for difference in moisture content
- Adjust delivered \$ for trucking cost
- Calculate \$ per lb of DM delivered

Delivery Price Comparison

•	1	
	distiller's grains	
	dried	wet
cost per ton, as is	\$120	\$42
dry matter content, %	91	36
cost per ton of DM	\$132	\$117
trucking cost per loaded mile	\$4	\$4
truck payload	25	25
\$ per ton as is per loaded mile	\$0.16	\$0.16
\$ per ton of DM per loaded mile	\$0.18	\$0.44

Delivery Price Comparison

•		
	distiller's grains	
	dried	wet
cost per ton, as is	\$120	\$42
dry matter content, %	91	36
cost per ton of DM	\$132	\$117
trucking cost per loaded mile	\$4	\$4
truck payload	25	25
\$ per ton as is per loaded mile	\$0.16	\$0.16
\$ per ton of DM per loaded mile	\$0.18	\$0.44
mileage to breakeven		58

Alternatives for Protein Supplements

- Non-protein nitrogen (NPN) – e.g. urea
- Alfalfa hay

Conclusions Getting the best bang for the buck

- Biology: Use the right feeds to provide the right nutrients
 - Protein causes a positive associative effect
- Economics: price the best feeds to provide the right nutrients
 - Consider cost per *delivered* unit of needed nutrient

